On Groups of Diffeomorphisms

نویسنده

  • T. E. STEWART
چکیده

I. We consider here the groups of homeomorphisms on Euclidean w-space and the «-sphere Sn. Chiefly we will be concerned with the question of whether or not these groups reduce in an homotopy sense to the ordinary orthogonal group acting on these spaces. Such questions are intimately connected with the theory of fibre bundles in which these spaces occur as fibres. We will restrict ourselves to the case where the homeomorphisms are of class C1 and will topologize the various groups taking account of the differentiability. We first consider Euclidean »-space En. We denote by K the group of all homeomorphisms / of £" such that / and /-1 are of class C K becomes a topological group by demanding uniform convergence of/ and its derivatives on compact sets,1 i.e. a typical neighborhood of the identity function is given by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actions of right-angled Artin groups in low dimensions

We survey the role of right-angled Artin groups in the theory of diffeomorphism groups of low dimensional manifolds. We first describe some of the subgroup structure of right-angled Artin groups. We then discuss the interplay between algebraic structure, compactness, and regularity for group actions on one–dimensional manifolds. For compact one–manifolds, every right-angled Artin group acts fai...

متن کامل

Diffeomorphism groups of balls and spheres

In this paper we discuss the relationship between groups of diffeomorphisms of spheres and balls. We survey results of a topological nature and then address the relationship as abstract (discrete) groups. We prove that the identity component of the group of smooth diffeomorphisms of an odd dimensional sphere admits no nontrivial homomorphisms to the group of diffeomorphisms of a ball of any dim...

متن کامل

LIMIT AVERAGE SHADOWING AND DOMINATED SPLITTING

In this paper the notion of limit average shadowing property is introduced for diffeomorphisms on a compact smooth manifold M and a class of diffeomorphisms is given which has the limit average shadowing property, but does not have the shadowing property. Moreover, we prove that for a closed f-invariant set Lambda  of a diffeomorphism f, if Lambda is C1-stably limit average shadowing and t...

متن کامل

Diffeomorphisms Preserving Symplectic Data on Submanifolds

We characterize general symplectic manifolds and their structure groups through a family of isotropic or symplectic submanifolds and their diffeomorphic invariance. In this way we obtain a complete geometric characterization of symplectic diffeomorphisms and a reinterpretation of symplectomorphisms as diffeomorphisms acting purely on isotropic or symplectic submanifolds. DOI: 10.1134/S008154380...

متن کامل

Some Geometric Evolution Equations Arising as Geodesic Equations on Groups of Diffeomorphisms Including the Hamiltonian Approach

Introduction 1. A general setting and a motivating example 2. Weak symplectic manifolds 3. Right invariant weak Riemannian metrics on Lie groups 4. The Hamiltonian approach 5. Vanishing geodesic distance on groups of diffeomorphisms 6. The regular Lie group of rapidly decreasing diffeomorphisms 7. The diffeomorphism group of S or R, and Burgers’ hierarchy 8. The Virasoro-Bott group and the Kort...

متن کامل

Coadjoint orbits of symplectic diffeomorphisms of surfaces and ideal hydrodynamics

We give a classification of generic coadjoint orbits for the groups of symplectomorphisms and Hamiltonian diffeomorphisms of closed symplectic surfaces. We also classify simple Morse functions on symplectic surfaces with respect to actions of those groups. This gives an answer to V.Arnold’s problem on invariants of generic isovorticed fields for 2D ideal fluids.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010